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1. INTRODUCTION AND SUMMARY

This technical report describes research performed on the distributed pro-
cessing of sensor data for situation assessment in a distributed sensor network
(DSN). Thia research was performed at Advanced Decision Systems under the
contract entitled ‘‘Distributed Hypothesis Testing in Distributed Sensor Net-

works”.

1.1 DSN PROBLEM DESCRIPTION

We assume a system structure as in Figure 1-1. There is a system of distri-
buted sensor/processor nodes. Each node may have one or more sensor types,
and the sensors from different nodes may have overlapping coverage. The sensors
collect data from the environment and pass them on to the processors (processing
nodes). The processing nodes process the sensor data and communicate with
other nodes through the communication network to obtain an assessment of the
state of the world. It is generally assumed that no single node possesses complete
information and each node may have a different world model. The processing
nodes may also control the sensors to improve on the performance of the overall

system.

A distributed sensor network can be used for many applications. We are
particularly interested in a DSN which is used for the tracking and classification
of multiple targets. The target environment is assumed to be dense, so that
determining the origins of the measurements in a particular sensor report is not
always easy. The problem is further complicated by the presence of false alarms
and missing target reports. In such a network, tracking and classification is
highly dependent on identifying the right data association hypotheses. Since the
nodes in general have access to different information, communication among the
nodes can greatly improve the performance of the system. The problem is thus
one of distributed hypothesis formation and evaluation, which we can abbreviate

ag distributed hypothesis testing.

In our previous DSN project we initiated research on the distributed track-
ing of multiple targets by the nodes of a distributed sensor network. In the fol-

lowing we shall review a model of the processing node that has been studied.
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l 1.2 PROCESSING NOD = 'ODEL

> The processing nodes are the main information processing units in the DSN.
> Each processing node collects measurements from a set of sensors. Its functions

are to process the local sensor data to form an assessment of the state of the

Pt

world, to combine the information obtained from other nodes with the local infor-

IO (S ol

Sl L VN

mation to update its assessment, to distribute information to other nodes, and to

performs these functions effectively. Thesz functions are performed in four

e e

separate modules within each processing node (see Figure 1-2). In the following

we shall discuss the modules in more detail.

)
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N &JJ o

R

TR DR e i) . | P

1.2.1 Generalized Tracker/Classifier

This module is responsible for the local data processing before any com-

: munication with the other nodes takes place. Since the objective of the system ‘.
: under consideration is the tracking and classification of multiple targets, this ;:.}
h: module is a multitarget tracker. In the previous project, we developed a general i
theory for multitarget tracking which is implemented in the form of the General- )
} ized Tracker/Classifier (GTC). The GTC has the structure shown in Figure 1-3 ‘1
and itself consists of four modules. The hypothesis formation module forms mul- E}“
' tiple hypotheses from the sensor data, each consisting of a collection of tracks to :
explain the origins of the measurements in each data set. These hypotheses are H
.‘1 then evaluated by the hypothesis evaluation module with respect to their proba- E§
:: bilities of being true. The filtering and parameter estimation module generates .-E
s state estimates and classificatiors for each track. It is essential for hypothesis
3 evaluation and can thus be viewed as a submodule. To stay within the computa-
tional constraints of each node, the hypotheses are pruned, combined, clustered,
s etc. This takes place in the hypothesis management module. The result of this
processing is a set of hypotheses and their probabilities, a collection of tracks
g corresponding to possible targets and the state distributions of these tracks.
: These quantities together constitute the information state for multitarget track-
g ing. R
Y 1.2.2 Information Fusion
.

This module combines the local information with information obtained from

the other nodes to obtain a new situation assessment. The information from the

Rl e ]

local nodes consists of the information described above. The information from

other nodes is also similar. Information fusion then consists of the following steps

eV e
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(see Figure 1-4):

1. Hypotﬁeﬁ's Formation - Given a set of hypotheses from other nodes, this
submodule generates new global hypotheses. Tracks from the
hypotheses of different nodes are associated in all possible ways, whether

they correspond to the same or different targets.

2. Hypothesis Evalu . - Dach of .he hypotheses [ormed above is then
evaluated with respect to its probability of being true. The statistics of
the tracks from different hypotheses are used in this evaluation. For
example, if two tracks are widely apart in their position or velocity dis-
tributions, they are more likely to have come from different targets than

the same target.

3. Hypothesis Management - This is again needed to make computation

feasible within the available resources.

1.2.3 Information Distribution

This module decides what information is to be transmitted, who gets the
information, and when it should be communicated. It thus specifies the informas
tion available to each node at any time, i.e., the information structure of the sys-
tem. Informaticn distribution can be fixed a priori for simple systems, or it can

be higt ly adaptive to the information needs in the system.

1.2.4 Resource 2llocation

This module allocates the resources under the control of the processing node
to maintain or improve the performance of the system. Some typical resources
include sensor resources and processing resources. Both resource allocation and
information distribution can affect the information available in the network.

Thus their activities should be coordinated.
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1.3 PROJECT GOALS

Many technical issues have to be addressed before DSNs can be designed,
built and ol;erated to achieve their military potential. Such issues include the
representation and processing of hypotheses, information fusion, communication
strategies, resource allocation, adaptation, system architecture, etc. In our previ-
ous DSN project, we successfully addressed some of these issues. The goal of our
current effort was to further advance the state of the art in distributed
hypothesis testing techniques in DSNs. This would provide more insight as to
how a DSN should be designed. Specifically, we intended to accomplish the fol-

lowing technology goals:

1. Develop intelligent distributed algorithms applicable to a wide range of
situations such as different network configurations, sensor types, target
models; such algorithms should also be adaptive to changing network

conditions and make efficient use of sensor resources.
2. Evaluate and adapt these algorithms for real-time implementation.

3. Design experiments to test and evaluate the algorithms in a more realis-

tic scenario such as that used by the Lincoln Laboratory test-bed.

Along with these technology goals, our plan was to develop a simulation environ-

ment to test the algorithms experimentally on different scenarios.

1.4 PROJECT ACCOMPLISHMENTS

There were two parts to our research effort. The first consisted of develop-
ment of algorithms for a DSN and the other was concerned with the development
of a simulation environment to test the algorithms and to evaluate the perfor-
mance of the system experimentally. In the following we discuss both the

theoretical and experimental results.

We extended the results of our previous DSN project and
developed information infusion algorithms for DSNs with arbitrary
communication patterns among the nodes. The key problems are the for-

mation of possible (or meaningful) global hypotheses from a group of local
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hypotheses and the evaluation of their probabilities. A set of local hypotheses
can be inconsistent so that they cannot be fused to form a global hypothesis.
The local proba_bilities of the local hypotheses may depend on common informa-
tion which neéds to be identified. In the previous project, we developed fusion
algorithms assuming broadcast communication. In the current project, we
obtained fusion algorithms for arbitrary communication. The algorithms are
based on modeling the events in the DSN by means of an information graph. To
use these algorithms, the histories of the hypotheses and tracks have to be part of
the information communicated. Then each node can determine the fusability of
the hypotheses and tracks and the common information which has to be removed
in evaluating the hypotheses. Information distribution strategies were also con-
sidered. These include strategies which depend only on the local information

state and those which model the behavior of other nodes.

The theory of multitarget tracking was extended to handle targets
with a structured state space and dissimilar sensors which observe
different components in the target state. The resulting GTC for processing
of local sensor data and the information fusion algorithms are very similar to the
usual case. However, a multilevel hypothesis formation and evaluation processing
architecture is often possible. Consider a network with two nodes. Each node
would form hypotheses based on the local measurements and the tracks would be
described in the local feature space. During the fusion process, knowledge on the
relationship between the features would be used to generate higher level target
tracks from the local feature level tracks. Hypothesis evaluation would then be
carried out. As an example, consider the tracking of vehicles. Suppose one sen-
sor node measures only the tread /wheel feature and the location. Feature tracks
from this node would consist of wheeled or tread vehicles over time. Suppose
another sensor node measures only the location and whether the vehicle has gun
or no gun. Tracks generated would consist of gunned or gunless vehicles over
time. During fusion, one would use the fact that a vehicle with a gun and tread

is a tank, a vehicle with neither gun nor tread is a truck, etc.

In the previous DSN project, we concentrated on independent targets. In
this project, we investigated multitarget tracking on structured sets of
targets. These include targets which move in groups. One example would be
planes flying in formation. Another more complex example consists of military
force structures. A division would consist of regiments each of which consists of
battalions, and so on. The tracking and identification of such structured targets

is important but not much systematic treatment is available. The problem is
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also interesting in a distributed framework since the observatiuns at different

[

nodes may be at different levels and targets are no longer independent. We

PR —

f‘ developed models for structured sets of targets, and the notions of multilevel i
) tracks and hypotheses. They are generalizations of our previous work on multi- E
! target tracking which may be viewed as having « single level of targets. Central- q
- ized algorithms for evaluating multilevel hypotheses were obtained. When res- g
39 tricted to two levels with targets moving in independent and identically distri- ;
t; buted groups, our results resemble those in single level tracking except the tar- %
= gets in the level are the groups themselves. The main difficulty in implementing !
SE: these algorithms is in the combinatorics, which becomes more severe with more i
. levels. Tt  more practical methods for hypothesis evaluation have to be found. 5
-g: These results can serve as a starting point for finding distributed versions of the g
algorithms. !

o !
o As part of the DARPA DSN program, M.L.T. Lincoln Lab. has performed §
" research on the tracking of low flying aircraft using acoustic sensors. A DSN ;
E: test bed has been developed and used to test and demonstrate DSN i
L

techniques and technology. The emphasis of the research at Lincoln has been

to demonstrate that a DSN is feasible via the construction of a complete

e gie
2 »
Bt i

(hardware and software) system. Our emphasis, on the other hand, has been the

development of general algorithms to detect and track targets in difficult

~

scenarios involving high target density, high false alarm rates, and poor detection

conditions. To illustrate the applicability of this general multiple hypothesis to

acoustic tracking, we considered to design of experiments using the Lincoln Lab.

acoustic tracking scenario. Possible system architectures, and simulation

s |

scenarios were investigated with inputs from Lincoln Lab. In addition, we

adapted the general distributed tracking aigorithm to acoustic tracking. Because

o of the special features of acoustic sensors (such as azimuth only measurements,
acoustic propagation delay), some modifications were made to the general algo-

5 rithm.

N

o The other part of our research effort was concerned with the development

of the simulation environment. Since an analytic evaluation of the algorithms
and the system performance is difficult our approach is to perfoi:1 simulation
. studies. We developed a simulation system consisting of four DSN nodes

with communication patterns which can be specified arbitrarily. Our

W W W NN e e e wr~ M R CERTEEEEE B W & K f  h e TRASEEEEEr— g g g G R MR e e e g e e e Rl < w - a pm_e

g eventual goal for the simulation environment is that it should allow rapid con-

o struction of scenarios and rapid development of the DSN system design itself.

t"i Also, the environment should be flexible enough to handle various types of ’

\.}
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processing within each DSN node, including the Bayesian analytic algorithms
such as the GTC which have been developed thus far as well as other Artificial
Intelligence (.AI) based algorithms. Some limited experimentation on this system
was performed. The results demonstrate that the nodes can perform better

through communication.

1.6 REPORT ORGANIZATION

The rest of this report is organized as follows. In Section 2, we present
information fusion algorithms assuming arbitrary communication among the
nodes. The algorithms are based on an information graph model of the DSN.
Section 3 contains results on tracking using dissimilar sensors. Section 4 presents
some algorithms to handle structured sets of targets. In Section 5 the design of
experiments for acoustic tracking is discussed. The modification of the general
algorithms to handle acoustic sensors is described. Section 6 presents some exper-

imental results with our simulation system.

1-11

RS E S YRS S YT

P g o
- )

» 4 %

o

R T

F-\
X
E
bl
“‘
Ny

b
3
‘é
E
N
=

TE7T ST

~ IR

a TS
Ny B

2N TN . et

Ay,

v



o v g

A

o B e K

s

R B e A e e N N L ) L N L e e O O O o A e T e e T T R T T G T ) T T P T O M A e A S A RS E A ALY

2. INFORMATION FUSION FOR ARBITRARY COMMUNICATION

In this section we present algorithms used by each node to fuse the infor-
mation received from the other nodes with the local information to obtain an
updated situation assessment. In [1] fusion algorithms for a broadcast communi-
cation pattern were presented. The results of this section extend those algo-
rithms to arbitrary communication patterns. In Section 2.1 we describe the infor-
mation fusion problem in the context of hypothesis formation and evaluation in
multitarget tracking. In Section 2.2 a model for information fusion in terms of
an information graph is given. Section 2.3 describes the hypothesis formation

and evaluation algorithms assuming arbitrary communication.

2.1 THE INFORMATION FUSION PROBLEM

In the following we state the information fusion problem faced by each
node in the DSN with emphasis on the relevant issues in multitarget tracking.
The formalism is based on the theory of multitarget tracking developed in the
previous DSN project (1], [2], and [3].

2.1.1 Local processing

The basic unit of information in the DSN is a sensor report z(t,s). This is

the output of a sensor s at a time ¢ and is denoted as

((y; (t,s )),-N;‘l(‘ "’),Nm (t,8),t,s). The index k =(t,s) identifies the sensor report (by

time and sensor) uniquely and is called the sensor report index or data indez.
N, (k) is the number of measurements in the report and (y,-(k))jN;‘l(k) is the
actual measurement vector. At any given time, let Z be the date set consisting
of a set of sensor reports and K be the associated data inder set, i.e, the set of
the indices for all the sensor reports contained in Z. The measurement inder set

corresponding to Z is defined as

Je= kLéK {1,...,Ny (K )} X {k }. (2.1)

Each element (j,k)=(j,t,s) in this set represents the j-th measurement gen-
erated at time ¢ by sensor s. The specific value of the measurement is y; (t,s).
According to the system model introduced in Section 1, each node processes the

sensor data as they arrive using the Generalized Tracker/Classifier (GTC). The
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output of the GTC when the data is Z consists of the information state £(Z)
defined as

Z) = (T(Wpe(z | 72))er(sy BT ), (P (A=N] Z )renpsy UK )

where

AR

e T(J), the set of possible tracks defined on J. Each track ris a subset of

J, ie., 7CJ and represents the measurement indices coming from a single

':’f L ]

target. It is usually assumed that a track cannot have two measurement
indices in the same sensor report, or the sensor resolution is such that

there are no split measurements. Such tracks are then said to be possi-

ble.

© ]

¢ p;(z | 7,Z) is the state distribution for a track. Given the track r, the set

o of measurements in Z for a hypothesized target is known. From this the
[ distribution of its state z (position, velocity, classification, etc.) at a time
t can be found and is a traditional estimation problem. Normally this
Kﬂ would be given in terms of a probability distribution; but if the state can
be approximated by a Gaussian random vector, the distribution can be
i expressed in terms of its mean and covariance.
z'f\ e H(J) is the set of possible data-to-data association hypotheses defined on
w J. Each data-to-data association hypothesis )\ is a possible explanation
F about the origins of all the measurements in Z. Each hypothesis consists
5 of a set of tracks, i.e., A = {r,,....}. The number of tracks in )\ is the

number of targets hypothesized to have been detected in the data set Z.

r
E‘; Each track ris the set of measurement indices from a hypothesized target
- and any measurement index not included in the hypothesis is
t::; hypothesized to be a false alarm. We assume that the sensor resolution is
: such that there are no merged measurements and thus there are no over-
E lapping tracks in the same hypothesis. The set of hypotheses satisfying
this property is said to be possible. This represents all mutually ezclusive
o and collectively erhaustive explanations about the origins of the measure-
T ments in 7.
E ¢ P(A=X|Z) is the probability of that the true data association A is a
o hypothesis X\ given all the measurements in Z. Its computation is the
& key operation in any multiple hypothesis approach to multitarget
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tracking and recursive algorithms were given in (1], [2], and [3].

¢ (K ).is the expected number of undetected targets up to and including
K. It is important for initiating new tracks. If »(K) decreases, the likeli-
hood of any measurement coming from a previously undetected target

also decreases.

The information state defined above constitutes a state for multitarget
tracking since it contains all the relevant information present in the cumulative
data set Z. As long as the information state £(Z) is known, the GTC can con-
tinue to process any new sensor report even though the actual data Z is no
longer available. When a report is received from a local sensor, the local tracking
data sire updated. There are three submodules corresponding to the functions of

hypc:hesis formation, hypothesis evaluation, and hypothesis management.

The hypothesis formation submodule forms new hypotheses from the old
hypotheses and the data. Consider a report z(t,s) from sensor s at time ¢.
Each measurement y;(¢,s) in the report may come from a previously detected
target, from a new target or a false alarm. At the same time, a previously
detected target may be missed (undetected) in the current sensor report.
Hypothesis formation thus consists of generating these possibilities starting from
the old hypotheses. Constraints imposed by the measurement values and possible
predicted states of the old tracks should be used to reduce the number of
hypotheses formed whenever possible. As a result of this step, sets of possible
tracks T(J) and possible hypotheses H(J) are formed.

The hypothesis evaluation module is responsible for computing the state dis-
tribution p,(z | r,Z), the probability of each hypothesis P(A=X|Z) and the
expected number of undetected targets (K ). Recursive algorithms have been
developed for computing these. Suppose k = (t,s) represents a new sensor
report and the quantities just before the arrival of this sensor report are denoted
by Z, K and J respectively. Then

P(A=X1|2) = C7'P (X=X | Z)Lrs (k M) IIL (v (k,97 (2.2)

where C is a normalization constant, y(k,r) is the measurement in the sensor
report z (k) associated with track . The right-hand side of the equation depends
on the following likelihoods:
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o Likelihood of false alarms Lg, (k,))

e Likelihood of a previously detected track 7 detected again as measurement y

L(y(k,)D) = [ puly | 2) pp(2) P (2 |7Z) u(dz) (2:3)

e Likelihood of a previously detected track 7 missed in the current report

L(y(k,D7A) = [ (1-pp(2)) p (2 | ,Z) p(dz) (2.4)

o Likelihood of a target newly detected as y

LiykND=7 [ puly | 2) pp(z) pi(z |9,Z) p(dz) (2.5)

In the above the target state z is a hybrid variable with a continuous part to
model geolocation variables and a discrete part to model classification informa-
tion. For convenience, we define a hybrid measure u on the state space to be the
direct product of a continuous measure and a discrete measure. Then any
integral with respect to this hybrid measure is a sum of integrals over the con-
tinuous part of the state space. These likelihoods can be computed at the same
time as updating the statc estimates of the tracks. When the target and sensor
models are such that the linear and Gaussian assumptions are satisfied, most of
the quantities involved are available from the Kalman filter calculations. As a
result of these calculations, probabilities of hypotheses and track state distribu-

tions can be obtained.

The hypothesis management submodule controls the growth in the number
of hypotheses to make the algorithm implementable. This step is crucial for the
successful of the multiple-hypothesis approach. Hypothesis management tech-
niques include pruning away low-probability hypotheses, combining similar

hypotheses and decomposing the hypothesis set into independent clusters.
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2.1.2 Information Fusion Problem

We assume that each node communicates the information state to the other
nodes. Suppose a node receives some messages from the other nodes. It has to
fuse or integrate this information with the local information to improve on the
local estimate. There are many ways of performing fusion. In our work fusion is
based on the following philosophy. The ideal case with the highest performance
(but also the highest communication cost) is when the nodes communicate the
actual sensor data through the network instead of the processed information. In
this case a node would be able to generate an optimal information state based on
all the data available. Since 1. a more realistic DSN only the information states
are communicated, an appropriate objective for fusion is to reconstruct the
optimal information state based on the information states received from the other
nodes. To facilitate further discussion, we call the data available to each node
before communication takes place as local data and the maximum data set avail-
able after communication as global data. Local and global information states,

hypotheses, tracks, etc. are all defined analogously.

There are thus two steps to the fusion process. The first step in the fusion
process consists of generating the possible track and hypothesis sets based on the
global data from the local tracks and hypotheses. Since the local data are the
part of the global data available to the nodes at the given times, the global
tracks and hypotheses when restricted to the local data should give the local
tracks and hypotheses. This implies that a certain combination of local tracks
and hypotheses should not be fused, i.e., there may not exist global tracks and
hypotheses for given sets of local tracks and hypotheses. In Figure 2-1, the two
tracks r, and 7, are two local tracks maintained at two different nodes. They
cannot be fused since the resulting global track would have two different meas-
urements in the same sensor report 1, thus violating the no split measurement
assumption. On the other hand, r, and r; can be fused to yield a global track
rUr,. The interpretation of this global track is that the measurements in hoth
tracks r; and r; come from the same target. Tracks r, and r, can also be fused.
However, they do not have to be and in that case the two tracks correspond to
two different targets. The fusability question also needs to be addressed at the
hypothesis level. Each local hypothesis is a possible explanation about the origins
of the local measurements. Thus if the local hypotheses are incompatible, they
cannot be fused to form a global hypothesis. This is illustrated in Figure 2-2
where each node : has two local hypotheses A/, j =1,2 derived from the two

common hypotheses M7, j=1,2. Since ! and A% are mutually exclusive, the local
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Figure 2-1: Fusability of Tracks

hypotheses A% and )\, are not fusable.

The second step in the fusion process consists in generating the state distri-
butions of the global tracks and the probabilities of the global hypotheses using
the local distributions and probabilities. If the nodes communicated in the past,
the local statistics would not be independent. A key problem in fusion is to iden-
tify the common information shared by the nodes and make sure it is not used

more than once in generating the global statistics.

2.2 INFORMATION GRAPH

In performing information fusion, it is necessary to identify the information
available to the nodes in the network at various times and how the information
of one node at one time is related to that of another node at a different timc.
For example, whenever two nodes communicate some common information is
shared between the nodes. The existence of this shared information would have
to be recognized in any future information fusion. Specifically, before any global

hypothesis can be generated, the fusability of the local hypotheses have to be
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ﬁ Figure 2-2: Fusability of Hypotheses
';; checked based on their histories. Furthermore, when the probabilities of the
hypotheses are to be evaluated, the common information should only be used
§ once. This necessitates tracking the histories of the communication and can be
(5]
accomplished conveniently using the information graph. The information graph
r’; introduced below can also be viewed as an abstract mcdel for a DSN.
"
I" 2.2.1 Information graph model
-
: We assume that there is a set of processing nodes called N. Each node n in
& N receives data from a set of sensors called S, such that S,NS,'=0 for n #n',
~ i.e., each sensor s only reports to one processing node. Let S= UNS" be the set
~ n€
ﬁl‘.:‘ of all sensors. If a sensor s generates a report at time ¢t with value z, the report
e is denoted as (z,t,s) or simply z(t,s). Each sensor report is the basic unit of
i% information and the set of all sucl reports is denoted by Z called the total infor-
mation or data set. Each sensor report is indexed by k =(t,s), i.e., the time ¢
f\'-'i when it is generated and the sensor s responsible for ite gencration. The set of
4 all such indices is called the total data indez set and denoted as
E K={(t,s) | (z,t,s )EZ for sone z} (2.6)
&‘3 At any one time, a node’s information may consist of only a subset Z of Z. Such
a
= 2.7
=
%2
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a 7 is called a partial information set or partial data set, or simply information

set or data set. For each Z there is a K corresponding to the data indices in Z.

The sensors send the data instantaneously to the nodes as soon as they are
generated. The communication among the nodes can be characterized by the
communication schedule C which is a subset of TXTXNXN. An element
(¢,6",n,n') means that the communication transmitted at time ¢ by node n is

received at time ¢' by node n'.

The information at each sensor or node in the DSN is affected by four types
of events. The nature of the events, the times at which they occur and the nodes

affected are given below:

1. Sensor observation and transmission -- I;p = K X {ST}
2. Sensor data received at node -- I =K X {SR}

3. Transmission of communication by node --
Iop = {(n,t,CT)|(t,t',n,n')EC}

4. Reception of communication by node --
Icg = {(n,t,CR)|(t't,n'; JEC}

Let I be defined as

[-=Ig0 Ulgp Ulpr U lgp (2.7)

I constitutes all the significant events in the network and forms the set of infor-
mation nodes (not DSN nodes) in the information graph. To represent the rela-
tion between these nodes, we define a partial order (antisymmetric, reflexive and
transitive binary relation) < on I as follows: for any ¢+ and i’ in I, i <i’ if ¢ =i’
or there is a communication path from ¢ to i'. The information graph on the
system is then the ordered set (I,<). By using the graph we can determine how
the information in tb= system flows. In particular, it is easy to find the history of
the information at a certain node. As we shall see later, this is useful for the pur-

pose of information fusion.
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Figure 2-3 show the information graph for broadcast communication. At a
given time all the nodes communicate to each another so that they all have the
same information after that. Figure 2-4 shows the information graph for a cyclic
communication system. The system consists of three nodes N={(1,2,3} collecting
data from the three sensors $={1,2,3}, respectively at the times ...,tsr ,ts7 +t; ...
The nodes transmit to the other nodes periodically according to the pattern
shown in Figure 2-4 at times ...tcp,tcr +t4,.. and the messages are received at

the times wulor yter SR7RT It is assumed that tST <ter <tcg -

For each information node i in the information graph, the maximum
amount of information available is the sensor data that would be raceived if they
had been communicated in the network. Thus associated with each node i the

(mazimum) data indez set K; and the (mazimum) information set 7; are defined

as follows:
K, = (k€K | (k,ST)<i} (2.8)
Z, = {(z k€L | kEK, ). (2.9)

As stated before, our philosophy is to assume that each node tries to reconstruct
the best estimate as if all sensor data are transmitted. Thus from now on tne

information available at each node i is assumed to be Z; with the data index set

K;.

The following observations are quite obvious from the definitions:

1. K, = {keK | (k,SR)<i}for all i inL

2. K, CK; if i <i'. (The information of a node always includes that of any

predecessor node.)

3. K, = U< K;: for all i in I. (The information at a node is the union of that of
i<y

the predecessors.)

4. K, = L}i K; for all i in I, where i'{+i means that i’ is the immediate prede-
i'ps

cessor of i. (One needs only - consider the immediate predecessors of ¢ in

generating the information available to i.)
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Since there is a one-to-one correspondence between K and Z, a similar set

of observations can be made for Z.

1.2, ={Z€Z|(Z,SR)<i}foralli inL
9.2,CZ i i<i.

3. Z, = .’<.Z,~, forall ¢ inL

4. Z; = \J Z for all 1 in L

Consider an information node i(€lgcg. This represents the event that com-
munication from other nodes is received. Let I be the sec of i nmediate predeces-
sor nodes for i, The fusion problem is to find the information state of iy using
the information states of the nodes in I (and those of other predecessor nodes of
I, if necessary). As mentioned before, it is important to identify the common

information in the data represented by I. This turns out to be

NK, = U K; (2.10)
Vel i'eC ()
where
C(I)={i'el | i'<i for v i€l} (2.11)

is the set of common predecessors for all the nodes in I. Equation (2.10) states
that the common information shared by the nodes in I is the union of the infor-
mation of the common predecessor nodes of I. In fact, based on the observation
(4) above, C (I} can be replaced by C . (I) which is the maximum set in C(I)
with respect to the set-inclusion partial order whereby I,<I, when I,CI, and
i;<ig for all i,€l, and i;€],. Then the union needs to be taken only over the
set C matll), i-e., equation (2.10) becomes
NK, = U K, (2.12)
i€l V1€C pall)
If necessary, we can regard C (/) as [ in equation (2.12) and repeat the process
to find the common information shared by all the nodes in C (). This would

be used in the following section to develop distributed estimation algorithms.
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2.2.2 Distributed estimation

We now consider the distributed estimation problem to illustrate the use of
the information graph. Any uncertainty in the origins of the measurements is
ignored for the time being. The results would be useful in the next subsection

when we consider distributed multitarget tracking.

The state to be estimated is a random vector z. The a prior: probability
density (or distribution) is p(z). The observation generated by a sensor s at

time ¢ is z(¢t,s). The following additional assumptions are needed:

o Both the sensor schedule K and the communication schedule C are independent
of the state z.

e Given z and K, each element in Z is conditionally independent from each other
and has an absolutely continuous transitional probability from state z to meas-

urement.

The distributed estimation problem is then to compute p(z | Z;) for each i €L
From the definition of I, this needs only to be carried out for the sets Isz and
I,z since the only activities at the other nodes involve transmission. For an
information node in Iy, we have a traditional Bayesian update problem where
the conditional probability is updated using the sensor report. We are primarily
interested in a problem involving information nodes in I,;. Suppose the infor-
mation node of interest is i, and that the immediate predecessors of i, form the
set 7. Then

7 ='%z,. (2.13)

The objective is the computation of p(z | UIZ‘) in terms of the predecessor pro-
i€

babilities p(z | Z;);<;. Ideally, one would like to use only the probabilities

defined on I, but as we shall see, this is not always possible.

In the appendix of [4], we showed that

P10 2)=c I (I pz|nz)"" (2.14)

i=1 i=1 NeNp JE€

where - is a normalization constant and
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NP = (N C{Ln } | # (N)=i) (2.15)

is the set of all subsets of {1,.,n} with i elements. In equation (2.15), # (N)
denotes the number of elements in the set N. For n =2, this yields the fusion

formula for two nodes:

plz | Zy)p(z | Z,)

Pz 1202, (2.168)

p(z | Z\UZsy)=c

Equation (2.15) can be interpreted as follows. Since the probabilities p(z | Z,)
and p(z | Z,) both utilize the information contained in Z,NZ,, the division by
p(z | ZNZ,) is needed to remove the common information so that it is used only
once. Equation (2.14) is just a general form where the probabilities from multiple
nodes are to be fused. Unfortunately, in both (2.14) and (2.16) there are still
terms involving intersections of the Z;’s. If all these intersections are of the form
Z; for some information node j or empty corresponding to the common a priori
information, then equation (2.14) or (2.16) serves as a fusion algorithm. In this
algorithm, the conditional probability at the fusion node is a product and ratio of
the conditional probabilities defined on a set of predecessor nodes. From the
definition of the information graph, all these probabilities can be communicated.
If there is an intersection jQNZj which is not equal to Z;: for some j'€l,
then by (2.10) the intersection can be expressed as the union of the information
of some information nodes again. Equation (2.14) can then be applied to evalu-

ate the probability p(z | _QNZ,- ). The process can be repeated until all the pro-
j

babilities are either conditioned on the information at the individual information
nodes or the a priori information. For notational convenience, we represent the a
priori information by adding an element iy to the set I of all the information
nodes and let T=IU{iy}. Then the extended information graph (I,<) is con-
structed by letting iy be the immediate predecessor of all the minimum nodes in

the original information graph (I,<). Then we have Z,=K;=0. With this
definition it can be shown (see Appendix of [4]) that

p(z |UZ)=0C Ilp(z |20 (2.17)
1€l vel

where T<I is a subset of T, (a());.; is some index tuple such that of) is a

nonzero integer for each 7, and C is the normalizing constant. The set I con-
tains all the information nodes which are relevant to fusion at node 14 off)

decides whether the information at node i should be added (ofi)=1) or removed

(of1)=-1).
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To illustrate the use of this algorithm, let us first consider a broadcast com-
munication pattern of Figure 2-3. For notational simplicity, we would suppress
the type of the node in naming the node. Consider the information node (t¢p ,n ).
We have
ﬂNZ(tCT,n)=Z(tCR—td,n ) (2.18)

n€

Thus, the fusion algorithm for a node n at time tgpis

(x| Z(ter i)
(zIZ(tCR’n) b,llsjp(zIZtCR“tdiz))

p(z | Z(tcr-tam))  (2.19)

where C is a normalizing constant. Each term in the product is the new infor-

mation contained in the sensor report z (s ,i).

For the cyclic communication system shown in Figure 2-4, consider node 1
at time t;p. The immediate predecessors of the information node (tcp,1) are
(ter,1) and (t¢cr,2). Equation (2.16) can thus be used to find p(z | Z(tcg 1))-
From the information graph of Figure 2-4, the common predecessors of (t;r,1)
and (t.r,2) consist of the two nodes (tcr-2¢4,1) and (tor -t;,2). Thus

Z(ter YN Z (te7,2) = Z (tor -2t4,)U Z (tor ~ta,2), (2.20)
and equation (2.16) can be used to find the probability of the right hand side
again. From the information graph,

Z (tor-2t4,NZ (ter —t4,2) = Z (ter -3ty , 1)U Z (bcr -3¢y ,2) (2.21)
= Z(tcp -3t3,1).
Thus, the algorithm gives for general 1 =1,2,3

p(z | Z(ter,i)) plz | Z(tor,[i+1])
plz | Z(ter-2t4,i)) p(z | Z(tor—t4,[i+1])

p(z | Z(tcr,i))=C

Xp(z | Z(tcp -3ts,1)) (2.22)

where [i] is ¢ modulo 3.

This is in the form of equation (2.17) with five nodes in the set I. Thus, in
addition to its current conditional probability p(z | Z(t¢r,1)), and
p(z | Z (tcr,2)) which comes from node 2, node 1 has to store three other proba-
bilities. Note that p(z | Z(tcr -t4,2)) is available to node 1 from earlier commun-

ications. This indicates that in a distributed sensor network, knowing the most
2-16
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r~~ent estimate may not be sufficient if one wants to recover the globally optimal

e. .mate.

Our discussion above assumes the fusion algorithm for each node is pro-
vided by a system designer based on the information graph. Alternatively, we
may assume that the informatioiu graph is known to all the DSN processing nodes
who then compute the algorithms in a distributed manner. Still another possibil-
ity is for each message to contain a history of the nodes and times that it has
passed through. Then a fusion node can use the histories of the messages
received to construct a partial information graph so that fusion can be per-
formed. This philosophy would be useful for fusion when the communication
pattern is not fixed a priori, such as when nodes can vary their communication

strategies or have to adapt to system failures.

2.3 FUSION IN MULTITARGET TRACKING

In this section we consider the fusion algorithm for multitarget tracking
assuming arbitrary communication pattern. The algorithm is based on the
theory of multitarget tracking developed under the previous project [1] and the
concept of the information graph. In the previous project (1], the information
fusion in multitarget tracking was investigated primarily for broadcast type com-
munication pattern. In this section, we treat the same subject assuming an arbi-

trary communication pattern which is defined in terms of an information graph.

2.3.1 Problem formulation

In Section 2.1 we introduced the fusion problem in general terms. We now
state it more formally in terms of an information graph. Given the communica-
tion pattern of the network, an information graph is defined. For each informa-
tion node i in the graph, there is a data index set K; and an information set or
data set Z; as defined before. Since we are now interested in multitarget track-
ing, we have to deal with measurement index sets on which tracks and
hypotheses are defined. A measurement index set J; at an information node i is

defined as
Jo ={(s,k)ET | kEK;}.

The activities in a DSN can be represented by the expansion of the nodes in the
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information graph. Two types of nodes, namely those in Ig; and Iz, involve
only communication. For the other two types, namely the ones in I, and I.p,
information -processing is involved. At a node in Ig;, the data received from the
local sensors are processed hy each node using the GTC, producing an informa-
tion state for the node. For a node i,€l;,, messages are received from other
nodes in the DSN and fusion takes place. Let I be the set of immediate prede-
cessor nodes of 1. For any node ¢ in I, assume the possible tracks T(J;) and the
possible hypotheses H(J; ) are known. In addition to these, the local probabilities
of the tracks and hypotheses are also given. From the information graph, the

measurement index set for the information node ¢ is J=U1J,~. The two specific
i€

subproblems in information fusion are then the following:

¢ (Hypothesis formation) How should node i, construct the possible (global) track
set T(J) and the possible (global) hypothesis set H(J) ?

o (Hypothesis evaluation) Suppose the global sets of tracks and hypotheses are
formed. How can we evaluate the probability of each hypothesis using the pro-
babilities of the predecessor nodes? Also, how should the state distributions of

the tracks be computed?

The two problems would now be discussed separately.

2.3.2 Hypothesis formation

As we discussed before in Section 2.1, not all local tracks and hypotheses
can be fused to form meaningful global tracks and hypotheses. OQur philosophy
behind information fusion is to reconstruct the information state £(Z) starting
from the information states £(Z;). This means that two tracks can only be fused
if there exists a global track which is consistent with them. This is also the idea
behind the fusion of hypotheses. The following are some definitions needed to

formalize this concept.

Consider any two measurement index sets J, and J, with J,CJ,. For each
track 7 in T(J,) the restriction of the track r on J, is defined as M J,, ie., the
track consisting of only those measurement indices in J,. We usually say that

the track ris a successor of its restriction M J, or conversely, M J, is the prede-
2-17
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cessor track of 7. Similarly, for each hypothesis A in H(J,), the restriction of the

hypothesis X\ on J, is defined to be
| Jg = {MJy | FEN}BS {0} (2.23)
i.e., a hypothesis whose tracks are those of \ restricted to J,. The concepts of

predecessor and successor hypotheses can be defined as in tracks.

Let (J;);¢; he an arbitrary tuple of measurement index sets where I is an

arbitrary nonempty set. (I does not have to be related to the information graph
at all.) Then any tuple (7, );¢; of tracks in HIT(.L) is said to be fusable if there
i€

exists a track rin T(UIJ:‘) such that
s €

nd =7, (2.24)

ior all 1€]. ris a track obtained by fusing the tracks in the tuple. Similarly any
tuple (X\;);¢; of hypotheses in HIH(J»‘) is said to be fusable if there exists a
3

hypothesis X in H(UIJ,-) such that
i€

N Go=\ (2.25)

for all i €l. Fusability of tracks thus means that there exists a possible global
track such that each of the local tracks represents a restriction of the global track
to the local measurement indices. Similarly the fusability of the hypotheses
means there exists a global hypothesis such that each local hypothesis is a restric-
tion of the global hypcthesis to the local measurement index set, or more
specifically, the nonempty restrictions of the tracks in the global hypothesis are
the local hypotheses.

If the measurement index sets (J;),c; do not intersect, fusability of tracks
and hypotheses is trivially assured. When the measurement index sets do over-
lap, we have to be concerned about the consistency in the tracks and hypotheses.
The following rather intuitive conditions for checking fusability are proved in the

appendix.

1. Any track tuple (r;);¢; in HIT(.L) is fusable if and only if
3

NN = NGNdg) (2.26)

for all (1,,1,)€l XI.
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2. Any hypothesis tuple (\;);¢; in I;IIH(.L) is fusable if and only if
N, N = N L (G NY) (2.27)

for all (i,ig)€l XI.

These two conditions state that a tuple of tracks (or hypotheses) is fusable if and
only if they share common predecessors (in tracks or hypotheses) in the overlap-

ping measurement index set
T =U{L N, | (1)€ XTI such that 5515} (2.28)

To check the conditions described by (2.27) or (2.28), we need to have tracks and
hypotheses defined on the set J. In general, these are not directly available since
there may not be any information node with J as its measurement index set.
However, by using the decomposition algorithm of equation (2.10), we can express
the set J as the union of the measurement index sets of some predecessor nodes
in the information graph. The two fusability conditions of equations (2.26) and
(2.27) can be further reduced to the following.

Let i, be a communication receiving node and I be the set of all the
immediate predecessors of it. For each (i,{,)€l XI, let T(i,,i,) be a set of infor-
mation nodes i such that i <i, and 7 <i,, i.e., their common predecessor nodes.

Then, we have

1. a necessary and sufficient condition for any track tuple (7; )¢, EHIT(J,-) to be
3

fusable is that, for any (1,,15)€! X1,
T.-lﬂ J(,‘) == T"zn J(‘—) (229)

for any 1 €1(1,,i5), and

2. a necessary condition for any hypothesis tuple (X\;);¢; GHIH(J,-) to be fusable
i€
is that, for any (i ,,i)€l X1,
Mol Ty =M, 1 (2.30)

for any 1 €I(i,t,).
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i
: 0
! In general, for any two distinct nodes ¢, and i,, their common predecessor 5
) set I(i,i,) may not be unique. However, to use the above conditions to test the i.'_f
"I‘ fusability, we need only to consider the set of all the maximum elements in the E
) set {i€l| <i,andi <i,}, i.e,, the maximum common predecessor set. Thus in [

’ the cyclic communication example of Figure 2-4, a track from the node (t;p,1)
and one from the node (¢{;p,2) are fusable if and only if they have the same

predecessor (or restriction) tracks in both the nodes (t¢r -2,1) and (¢cr -1,2).

ez v " gy

TNt

The test defined by (2.29) provides a necessary and sufficient condition for

A
Ry

Lo R

P T

track fusability but equation (2.30) only provides a necessary condition for

=
" k"

hypothesis fusability. This is due to the fact that a fusable tuple of tracks pro-

7

P AL ATER

e x4

duces only one fused track but a fusable tuple of hypotheses may produce more

than one hypotheses. The counterexample in Figure 2-5 shows that (2.30) is not

! a sufficient condition for the hypothesis fusability. In this example, the two
hypotheses (A\;,\,) are to be fused. The common predecessors of the nodes ! - .d
2 are nodes 3 and 4. It is obvious that X\, | J3=X; | J3 and also X\ | J,=Xs | Jy,
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thus satisfying the necessary rondition of (2.30) for hypothesis fusability. In fact,
this is true since both X\, and X, are the results of fusing A\; and X\,. However,

since
M TaNTeF# N | SN T, (2.31)

the hypothesis fusability condition of (2.27) is violated. This is again obvious
since X\, and X\, are mutually exclusive. A\, hypothesizes that r, and r; are from

the same target whereas \, hypothesizes that r, and r; are from different targets.

Although it is not sufficient to determine hypothesis fusability by consider-
ing only the predecessors of the hypotheses in the predecessor nodes, the condi-
tion (2.30) can be used to eliminate hypotheses for further consideration if they
do not have the same predecessor hypothesis in a common nredecessor node.
Furthermore, the following equivalence condition (proved in the appendix of [4])

relates hypothesis fusability to track fusability.

Hypothesis Fusability Condition. Let (J;);¢; be any tuple of measurement index
sets and J=Lélj,-. Then, any (N\;);¢; EHIH(J,-) is fusable with fused hypothesis
i i€

A\€H(/) if and only if

L. for any 7 in X, there exists a fusable track tuple (r;);¢; EHI()\,- U{@}) such that
i€
T=U Ty and
iel

2. for all 1 €] and for all r; €);, there exists a unique 7 in X\ such that r; Cr.

Condition 1 states that every track r in the hypothesis X is formed by taking the
union of the fusable tracks in the local hypotheses. Condition 2 states that every
r; belongs to a unique global track in any given global hypothesis.

Hypothesis formation thus consists of the following steps:

1. Use the necessary condition of (2.30) to reduce the candidates for fusable
hypothesis tuples
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2. Use the track fusability condition of (2.29) to further determine hypothesis
fusability

3. Exhaust all possible fusable hyaothesis tuples, and for each fusable hy;othesis
tuple, generate all possible fused hypotheses.

The last step is concerned with the actual hypothesis formation and consists of a
two-level procedure. The first level performs hypothesis-to-hypothesis associa-
tion. The second level carries ou' the actual track-to-track association to form

global tracks from the fusable track tuples.

2.3.3 Hypothesis evaluation

Given the global hypotheses and global tracks constructed from the local
hypotheses and local tracks, the objective of hypothesis evaluation is to comp::te
their probabilities and state distributions using the communicated local informa-
tion. In terms of the information graph, the problem is as follows. Le”
ip=(t,n,CR) be a communication receiving node in I;z and I be the set of all

the immediate predecessors of 1,. Let Z=U!Z,- with K and J be the associated
Ve

index set and measurec.ent index set. We need to compute the probabilities of
all hypotheses, (P(A=\|Z)),ens) the state distributions of the tracks,
(pi(z 1 72))erys) and the expected number (K') of undetected targets.

We make the standard assumptions on the target and sensor models (see [1]
or [2]). In particular, the target models are assumed to the independent and
identically distributed Markov processes and the number of targets is Poisson dis-
tributed. The sensor measurements generated by sensors at different times are
conditionally independent given the target state. In addition to these, we also
make the special assumption that the target state is either static or bidirection-
ally deterministic (which makes it equivalent to a static process). This assump-
tion is needed to make the algorithm more implementable. Later in this section,
we should briefly discuss how this assumption can be relaxed. The target state is
in a hybrid variable with a continuous part to model geolocation type variables
and a discrete part to model classification type information. For convenience, we
define a hybrid measure u on the state space to be the direct product of a con-
tinuous measure and a discrete measure. Then any integral with respect to this

hybrid measure is a sum of integrals over the continuous part of the state space.
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With these assumptions, the following hypothesis evaluation results are
derived in the appendix. Let (I,a) be the pair which satisfies the condition (2.17)
of Section 2.2.2. Suppose for each €I, the probability p(\|Z;) for each
hypothesis X in H(J;), the track state distribution p(z | 7,Z;) for each track rin
T(J), and y(K;), the expected number of undetected targets are all known.

Then for every hypothesis A€H(J ), the probability of the hypothesis being true is

given by
P(A1J)=N[2)=CV L PN J5) | )2 T L(n(Z);)  (2:32)
vel €M /)
where C is a normalization constant, and
L(nlZer) = [ o | 2o J5) " Oude) (2.33)

is the likelihood of the global track 7. The expected number of undetected tar-
gets is given by

vK) =L 0(Z)e) = [TLo (e 10,2)0uar) (234)
where
?(z | nZ;)=p(z | r,Z;)u(K;)e'T(r), (2.35)
L i nE=0
€lr) = {0 otherwise ° (2.36)

The state distribution of the track r can be updated by

p(z [2)=c" Lo (e | (N )20 (2:37)
ic
where ¢ is a normalization constant.

We note first of all that hypothesis evaluation depends only on the statis-
tics at the information nodes in the set . This is the same set used in distri-
buted estimation and represents the nodes which are relevant for fusion. The
function a determines whether the information at a node should be added or sub-
tracted. The hypothesis evaluation formula of (2.32) has a two-level structure.
At the higher level, the product of the local hypothesis probabilities evaluates the
probability of associating the given set of local hypotheses. The next level con-
sists of the likelihoods of the individual tracks.
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Each L (r,(Z )rer) is a track-to-track association likelihood, i.e., the likeli-
hood of associating all the tracks in the local track tuple (M J;);.; with one tar-

get represented by the global track r which is their union. Its evaluation depends
on the state distributions of the local tracks. If the tracks have similar state
descriptions then the integrand in equation (2.33) will be large, thus resulting in a
high likelihood. On the other hand, if the local tracks have state descriptions
which are very different, the integrand in (2.33) will be small, resulting in a low
likelihood. In equation (2.33), the function 7 (z | r,Z;) is identical to p(z | r,Z7),
the state distribution for track r, when the track r has a nonempty restriction at
the node 1. When this is not the case, i.e., the track 7 has not been detected yet
at 1, the function 7 is scaled by the expected number of undetected targets and
is no longer a probability distribution. It represents some kind of density for

undetected targets.

Equation (2.34) computes the expected number of undetected targets by
fusing the local track state distributions of the undetected targets. Equation
(2.37) is the fusion formula for the global track state distribution. Note that it
has the same form as (2.17). This is not at all surprising since given a particular
track, computing the state distribution of the target is the usual estimation prob-
lem. Thus the fusion algorithm for distribution estimation is an integral part of

fusion for multitarget tracking.

2.4 CONCLUSION

In this section, we have described the results of our research on information
fusion for multitarget tracking. We have identified two main problems in infor-
mation fusion assuming arbitrary communication. The first is how to generate
meaningful tracks and hypotheses starting from a set of local tracks and
hypotheses. The second is how to compute the statistics on these tracks and
hypotheses when the local quantities may contain common information due to

past communication.

We have developed an abstract model of the DSN in terms of the informa-
tion graph. Using this graph, algorithms for information fusion have been
developed. The two problems of hypothesis formation and evaluation all require
keeping around histories of the tracks and hypotheses in the system. Using this
history, the fusability of tracks and hypotheses can be determined. At the same
time, any common information shared by their statistics can be identified so that

it would not be double-counted. When specialized to broadcast communication,
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]
! we can show that the general fusion algorithms for arbitrary communication

reduce to those developed in the previous project.

The hypothesis formation algorithms for fusion do not depend on the target

models. For hypothesis evaluation, we have assumed that the targets are static
g or that their motions may be approximated by ‘‘deterministic” process models.
. When the target models are assumed to be general Markov processes, the
E: hypothesis evaluation algorithms have the same form as in (2.32) to (2.37). How-

ever, the state of a track would have to be a trajectory sampled at various times
':‘ and computing its probability distribution would be difficult. Thus the difficulty
- of extending the results to treat general Markov models is more related to imple-
5 mentation issues. On the other hand, as long as the target motion is fairly regu-
B

lar, the deterministic process models we have assumed may be quite adequate.
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3. DISSIMILAR SENSORS AND ATTRIBUTE BASED TRACKING

The algorithms presented in Section 2 are quite general and apply to arbi-
trary target models as long as the target motions are independent. In this sec-
tion, we consider the case when the different nodes in the DSN have sensors of
different types. For example, one node may have sensors which observe a certain
set of features while another nodes may have sensors which observe a different set
of features (e.g., radar versus acoustic). In general, the sensor produces data
which contain attribute information as well as kinematic information. Typical
attributes may include wheel or tread type of ground vehicles, radar images of

ships, engine type of aircraft, and different types of electronic emissions.

This tracking problem with dissimilar sensors is both interesting from a
theoretical and practical point of view since correlation of results from multiple
sensors can often yield useful information not available from a single sensor. In
particular, by considering attributes from multiple sensors, it may be possible to

determine the type of the target.

In this section, we consider the problem of tracking and classifying targets
when the nodes in the DSN have sensors of different types. Such targets usually
have states which contain some structural information (e.g., a given target type
may contain certain features which in turn contain other subfeatures). The rela-
tionship between targets with structured states and general structured set of tar-

gets will be discussed in Section 4.

3.1 TARGET AND SENSOR MODELS

We assume that the sensors at various DSN nodes have different capabili-
ties and in particular, no single node can classify the target type uniquely. Thus,
the nodes have to cooperate to achieve the overall mission. If this is not the case,
then the results of Section 2 apply. Each node performs its local tracking and
classification. Cooperation among the nodes, while it may improve the quality of
the results, is not really necessary. There are also other situations when the
nodes have identical sensors (e.g., acoustic or infrared) but the targets are not
observable from a single sensor. In this case, cooperation among nodes is also

needed. An example of this acoustic tracking will be presented in Section 5.
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3.1.1 Target Models

We assume that each target has a state z(¢) at time t which evolves
according to ‘some dynamical model. The state z(¢) is represented by
(z°(t)z?(t)), where £°(t) is the continuous part representing its geolocation
quantities such as position, velocity, etc., while z%(t) is the discrete part
representing other attributes. z°(t) is usually modeled by means of dynamical

equations such as:
2 (t)=Fz°(t)+ w(t) (3.1)

where w(t) is a white driving noise. The components of z? usually have some

d

internal structure. For example, ¢ may consist of:

d (1401141,142) (3.2)

where

e 299 is the type of the vehicle (tank or armored personnel carrier (APC), or
truck)

o z%1is the attribute corresponding to the wheel type (tread or wheel)

e z¢% is the attribute corresponding to the weapon carried on the vehicle {gun or

no gun)

The discrete states are related as in Figure 3-1 where the state z?? determines
the states %! and z %% i.e., the type of the vehicle determines the wheel type and
the presence (absence) of guns as in Figure 3-1. In some cases, the relationship
between the discrete states may also be probabilistic as given by p (z¢',z4?| z¢9).
For example, one type of vehicle may have a given radio with certain probability.

The probability of the attributes is sometimes conditionally independent, i.e.,
p(e412 4 24 = p(e*} [ £*)p (242] =) (3.3)

which may simplify the processing considerably. In other cases, some discrete
states themselves (other than the target type) may evolve with time and depend
on other states, e.g, the electronic emission of a target. The dynamic behavior

may be modeled by a Markov process.
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Figure 3-1: Example of Structured State
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In general, the discrete target state may be hierarchical with more than two
levels as given in Figure 3-2. Each attribute may assume different values depend-
ing on the target type. Frequently, the probability distribution of the attributes
satisfy some Mﬁrkov property, i.e., the probability of the attributes conditioned
on all higher level attributes is the same as that conditioned on the attribute

immediately above it. For the example in Figure 3-2, this implies that

xd31,xd32 I 1421’1‘“1 dO) = p(xd:!l,deZ I xd?l) (34)

p( =

3.1.2 Sensor Models

The sensors at the different DSN nodes may have different capabilities.
Some sensors may measure the kinematic quantities while others may measure
attributes (e.g., the wheel type or the absence or presence of guns). Still others
may measure the target type directly. The sensors are subject to false alarms
and mis-detections. For a detected target, the measurement model is given by
Pm(y; | ) where z is the target state and y; is the measurement for sensor j.
To represent the presence of both kinematic and attribute measurements, the

measurement model can be stated as
yi(t) = Hyz*(t) + v;(t) (3.5)
p(3(t) | z(t) = p(sf(t) | 2% ie4;) (3.6)

where

e y/(t) and yX(t) are the continuous and discrete components of the measurement
of sensor j

o A; is the set of attributes observable by sensor j

® v;(t) is the measurement noise

In the above, we have assumed that the continuous and discrete measure-
ment models are independent. Sometimes this may not be the case; for example,
a poor kinematic measurement may be correlated with a poor attribute measure-

ment. The coupled measurement model then has to be used.
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3.2 LOCAL PROCESSING

Local processing follows the algorithms presented in Section 2.1.1, using the
appropriate sensor model for each node. Each node has an information state
represented by the set of tracks, set of hypotheses, track state distributions and
hypothesis probabilities. Equation (2.2) is used for hypothesis evaluation with
the likelihoods given by (2.3) to (2.5). Since not all the states of the targets are

observable from the sensor j, the state z should be replaced by:
zi = (2°,2%) (3.7)

where z° is the continuous (geolocation) state and z% is the discrete state of
attributes observable from sensor j. The relevant tracks state distribution is

then (with some independence assumptions on the states and measurements)

P (zj |nZ;)=p(z° |Z;)p (:cdj | nZ;) (3.8)

When the target and sensor models for the continuous state satisfy linear
and Gaussian models, the geolocation component of the track state description
can be computed by means of the Kalman Filter. The discrete component is

computed using a Bayesian updating formula. Assuming z% is static, then
P(Idj | nZ;) = C-lpm(yjdl ¥ )p(z N |?,Zj) (3.9)

where C is a normalization constant, p,(-) is the discrete measurement model

and p (z% | 7,Z,) is the predicted discrete state given the previous measurements.

For the example of Figure 3-1, each hypothesis from the wheel type sensor
node will contain the number of targets detected, their positions and velocities
and possible classifications into wheel and tread vehicles (with probabilities).
Similarly, the gun type sensor generates hypotheses with tracks described by gun

type as well as locations and velocities.

3.3 INFORMATION FUSION

When sensor nodes have the same type of sensors, communication among
nodes serves primarily to reduce the uncertainty associated with the situation
assessment at each node. For example, nodes 1 and 2 may have different esti-

mates of a target given by £, ,p;(z%)), { = 1,2, where

- B I R a1 Tl T e o T . . W ; —— - -~ - m
!.'L A i‘f"{u{.. AL e T, Tna T m T Y (' .;_-‘('._ - kf' Fms .,._"La"‘! PR AT o .‘{. S q_‘\’:.. <A J{ LA " R f-"(-_lcy‘ o \(..'\F- "“.-'Lq-(‘_".-. -'{o-‘ ..J‘.-"‘ .

XY

“ £ A

Lok O

W 1T

Y A .
S Y S S

e W

Rl uh el el

—

b 3

TR e S el

T

SRRl | ST

¥

254

el | &SR,

"

a

i

Pl ot

B

1 K

ey
iy T



MR LA VYW RN TRARTIRCERGRAU WS

A L TN P TN N A PO ST P T D7 AR R A PP TR F N PR O R A AW R L AR AR

T =

>-S

At

kS b )

ety

AN

-l

p B g

"’

e E 20 J

L_S* g

i

E *
£ .

]

»

[

oy

!

Koy
2 g

A LA WL LT e LN Y T Pa P _— LT T A e o e = —
St o N M T R e T !.)-'."n.":-!.*.;."r'.‘\rk'{'y'- RO _*{'\-{'\‘:\i\tﬁ-?&ﬁ.\i‘nf"?- § SUE TP (V. CRN A"f-"ﬁ“i?h“f-"’:"il'

- 2 is the geolocation estimate by sensor node :
- ¥, is the error covariance of sensor node i, and

- p;(z?) is the probability distribution of the discrete state z? estimated by sen-

Sor 1.

Then when the nodes communicate, the estimate of the target can be improved
and becomes (£°,Z,p (z¢)) through fusion of the track state estimates. In addi-

tion, the nodes can also improve on their estimates of the number of targets.

When the nodes have sensors of different types, each node produces track
state estimates for the attributes which are observable to the node. Communica-
tion between nodes then not only improves the geolocation estimates but also
produces estimates of other attributes not observable from the individual nodes.
This will usually require knowledge of the relationship among the attributes in
the structured state. For example, if Node 1 concludes that the target is a vehi-
cle with thread and Node 2 concludes that it has a gun, then through communi-
cation each node may conclude that it is a tank. If the individual nodes’ esti-

mates are probabilistic, then the fusion results will also be probabilistic.

In the following, we consider information fusion for nodes with dissimilar
sensors. Hypothesis formation and management follow the general algorithm
given in Section 2. For example, fusability conditions will have to be checked
before tracks and hypotheses are fused. Our discussion will thus focus on fusion
of track state estimates and hypothesis evaluation. Since the fusion results for
arbitrary communication can be derived from fusion of two nodes, we assume the
structures in Figure 3-3. In Figure 3-3(a), the fusion node can be a different node
from nodes 1 and 2. It collects information from Node 1 and Node 2, performs
fusion and broadcasts the results back to the nodes, thereby performing the coor-
dination. Alternatively, the fusion node may reside with each of the two nodes in
a broadcast situation. Figure 3-3(b) is the case with no coordination or feedback

from the fusion node to Nodes 1 and 2.
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3.3.1 Fusion of Track State Estimates

Since fusion of track state estimates is for tracks which have been associ-
ated, we do not represent the track explicitly in the following discussion. Sup-
pose the observable state for Node i is ' which includes the continuous state z°

and the discrete state z%, i.e.,
' =(z°z%) (3.11)

For a given target, the track state estimate by Node i given the cumulative data
Z; is given by p(z'|Z;/). As discussed before, this may contain a continuous
part (mean and covariance) and a discrete part (probability distribution). For

the example of Figure 3-1,
p(z' |Z)=p(= 2% | Z)=p(z" | Z)p(z¥ | Z) (3.12)

where p(z° | Z;) will be characterized by a mean and covariance. Let Z be the
cumulative data of the fusion node when it last broadcast and Z be the cumula-
tive data after it receives communication from the nodes, then the complete state

estimate of the target after fusion is given by:
p(z2%2% 24| Z) =p(2° | Z)p (z%%2% 2 %% | 7) (3.13)

where the continuous and discrete state estimates are computed as below.

Fusion with Coordination

The fusion of the continuous state estimate is given by

Pz 1Z)p(2° | Zy)
p(z°|2)

p(z° 12)=c (3.14)
where C, is a normalization constant. The fusion of the discrete state estimate is
given by

-1 P(Id’ | Zl)P(IHIZZ)

40 _d1 _d2 40 _dl _d2) 7
z* % Z)=20C — — z* %z Z

4 Pt Z)p (247 Zy)
= C, i1, 7 12, 7
p(z* | Z)p (2% 2)

(3.15)

p(zdl,zd2| Ido)p (Idol Z)
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where we have assumed that the attributes z¢! and z¢? depend only on =z

C, is a normalization constant.

Equatibn' (3.14) is the standard equation for fusing two probability distribu-
tions of the same random state. Equation (3.15) fuses the probability distribu-
tions of different attributes to obtain that of all attributes. The last factor in
(3.15) represents the a priori estimate of the attribute z¢? (vehicle type) based on
Z. It is the marginal probability of p(z¢%z¢%,z¢%| Z) computed from an earlier
fusion. The factor p (z%!,2¢%| z%?) is the model of the structured state. For the

example in Figure 3-1, we may have

dl 2

p(z?' = tread, 2% = gun | %% = tank)=1

p(z¢! =tread, z°2 = nogun | z¢® = APC)=1

p(z¢! = wheel, 2 =nogun | ¢ = truck)=1 (3.16)

and zero otherwise. The last two factors in equation (3.15) together predic. the
target attributes from the previous communication time. The first two factors in
the numerator represent the estimates of the two attributes from the two nodes.
Since these estimates share some information with the predicted values through
Z, the factors in the denominator are used to remove any redundant information.
To obtain an estimate of the target type, one needs only to sum over the possible

values of ¢! and z %% to obtain p(2¢°| Z).

Fusion Without Coordination

If there is no feedback from the fusion node to the other nodes, then Equa-
tion (3.14) should be replaced by

p(1:°|Z)=C{1 p(I‘:l]—’l)p(Icl{?)p(rc'Z) (317)

p(c° | Z2)p(z" | Zo)

where C, is a normalization constant, Z; is the cumulative data of Node i before
the last communication to the fusion node. This fusion formula is a special case

of the general Equation (2.17).
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